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Abstract— Although viscoelastic moduli may be linear, Poisson ratios (PR) are always nonlinear
functions of pairs of normal strains. This is equally true for physical PR defined in the real time
space and for pseudo PR differently derived in the Fourier transform (FT) domain. It is shown
analytically that only if anisotropic or isotropic viscoelastic moduli and relaxation or creep functions
are characterized by identical time functions in all directions and stresses are constants or at most
temporal and spatial separable functions, then corresponding PR must be time independent. Under
all other conditions PR are proven to be time, stress and thermal expansion dependent through
time integrals, although physical and pseudo PR are shown to be functionally unrelated. The
consequences of PR nonlinearities are that their uniaxially determined values are not applicable to
other uniaxial loadings with different time histories or to multiaxial loadings and thermal expansions,
if the latter are present. Similarly, isotropic PR cannot generally be determined solely from vis-
coelastic Young’s and shear moduli, even for linear materials. Consequently, viscoelastic material
property characterization in terms of PR is not unique and viscoelastic responses are best described
in terms of creep or relaxation functions. Anisotropic and isotropic viscoelastic PR time effects are
investigated analytically and evaluated numerically. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The phenomenon of deformations normal to the loading axis resulting from 1-D forces,
known as the Poisson ratio effect (Poisson 1829a, b), has received extensive attention in
the theories of elasticity and plasticity. Historically, being deeply rooted in the usage of
elastic and plastic metals, Poisson ratios have enjoyed the advantage of relatively easy
experimental determinations. Electric strain gages can be used to great advantage on metals,
because their resistance wires have the same elastic moduli as steel and aluminum. However,
when applied to “‘softer” (less “‘rigid”’) materials, such as polymers, rubbery materials or
composites, strain gage moduli are five to six orders of magnitude higher than those of the
tested materials. Indeed, here these gages are a detriment to such experiments since they
serve as reinforcements to the actual material. Under these conditions such strain readings
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are the values specific to gage wire displacements and do not properly reflect true actual
strain magnitudes in the specimen.

By experimental necessity, multiaxial polymer material property determinations are
conducted on thin strips or high aspect ratio thin plates under uniaxial loadings and
multiaxial stress fields. While accurate measurements of strains and/or deformations in the
directions of 1-D loads are generally achievable, because of the specimen’s relatively large
dimensions in the loaded direction, this facility is lost in the other orientations because of
their relatively small deflections. These inherent problems pose limitations and make accu-
rate experimental measurements of Poisson ratios, moduli and of the associated multiaxial
strains extremely difficult when under the simplest service conditions and nigh impossible
during manufacture (cure) when material phase shifts and high temperature gradients are
ever present.

These difficulties are further compounded in viscoelastic materials by the fact that all
moduli and Poisson ratios are time dependent material properties (Gurtin and Sternberg,
1963 ; Hilton, 1964a; Hilton and Dong, 1964b) and for anisotropic viscoelasticity they
additionally take on distinct tie functions in different directions. As a consequence of the
operational restrictions associated with strain measurements along and particularly normal
to the 1-D loading axis, many experimental researchers have assumed identical time func-
tions for all anisotropic viscoelastic moduli, thus, as will be shown subsequently, reducing
the attendant Poisson ratios to constants. Such assumptions severely cloud the proper
characterization of real viscoelastic materials and leave analysis in the dark regarding the
true behavior of anisotropic moduli or compliances and relaxation and/or creep functions.

For a comprehensive and rigorous treatment of anisotropic elasticity, which forms the
background for anisotropic viscoelasticity, the reader is referred to Ting (1996).

2. ANALYSIS

As an introduction to this topic consider a general linear anisotropic viscoelastic
material in a Cartesian coordinate system x = x;, with & =1, 2, 3 where, under proper
conditions, the Fourier transforms (FT) of the constitutive relations may be written in the
form (Hilton and Dong, 1964a, b)

?k[(xj w) = z‘klmn (x’ CL))?mn (x7 CO) - ékl(xv w)'jjj(x7 CU) (2‘ la)
or alternatively
Tt (%, ©) = Cona (X, 0)F (%, 0) +Fia (¥, 0) A T (x, ) (2.1b)

where E,;,,,and C,,,.,are, respectively, complex moduli and compliances with inter-
dependences Eipn = 1/Crin qu are thermal expansion functions, 7 is the coefficient of
thermal expansion, 7 the temperature w.r.t. a reference temperature T, where the strains
are zero and with the total temperature defined by T'= T,+ .7 . Repeated indices, unless
underlined, indicate summations. The overscores indicate FT of time functions, such that

x s

F(x,)exp(—iwn)dt or F(x,w) = J' F(x, &) exp(—iwé) dé

— o0

F(x,w) = J

-

where i = ./ —1. The FT are applicable only if 7= T(x) or if one assumes that all the
anisotropic shift functions a,,,, and reduced times &, are, respectively, equal to themselves,
such that they can be represented by a single &
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:(xv t) = iklmn(xa [) = J aklmn[xs t/a T(xa t/)a M(x> t/)v a(xa tls T)] dt/

0

and

t

é(-x3 t) = éklmnT(x5 t) = J aklmnT[xv t/a T(xa t,)’ M(x’ tl)5 a(x, t/a T)] dt’

0

where M is the moisture content and with time-temperature shift functions
a = Qyn = G- During manufacture the degree of cure o has values ranging from
0 < a < 1, while in service « = 1 (Yi et al. 1995, 1996, 1997).

For the purpose of an initial simplified analysis and discussion of viscoelastic time
effects of Poisson ratios, let the state of stress be limited to a uniaxial one with isothermal
orthotropic properties, such that a,; # 0 while all other 6,; = 0 and F = 0, resulting in a
reduced set of relations (2.1) given by

T =§11?11+E12?22+1=313?33 orgy, zz‘11311 (2.2a,b)
0= E12?11 +E22?22 +i23?33 OrE,; = z'12311 (2.3a,b)
0= E‘13'511 +E23E22 +§33?33 OrZ;y = -(__:13311 (2.4a,b)

with the usual symmetry conditions on all functions in the form F; = Fj for k # [ and
where

Eu # E # Ey fork #1 2.5

For any general loading and/or thermal state, viscoelastic PR are definable in the real
time domain in the same physical sense as the original elastic ones (Poisson 1829a, b), i.e.
the ratio of normal strain pairs in mutually perpendicular directions, to whit

ey(x, 1)

(X, 1)

DX, ) = — fork # 1 (2.6)

with no summation over the underlined indices and with the understanding that the above
physical definition of v,, mandates that

- =5Q(x7 (l))
vk,(x, (D) # —m and Ve F Vi fork £ 1 (27)

Therefore, the elastic/viscoelastic analogy does not apply to Poisson ratios including those
for isotropic materials, even though it holds individually for strain, stress and displacement
tensors. This is due to the fact that v, in eqns (2.6) are related nonlinearly to pairs of
normal strain components, including cases when materials obey linear constitutive relations.
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Alternately, pseudo Poisson ratios can be defined as shown in Appendix A in the FT
w space based on the equality of eqns (2.7) and inequality of eqn (2.6) and shown in Table
2.

Substituting general viscoelastic constitutive relations into (2.6), yields

Table 1. Some properties of viscoelastic Poisson ratios v,

Case  Conditions Stresses Temperature Moduli vilx, 1) Eqn No.
1.1 Isotropic Uniaxial const. 0 STF Vidx) (2.10)
1.2 Isotropic Uniaxial g(6)a}(x) 0 STF Ve x) (2.10)
13 Isotropic Uniaxial ¢,(x, 1) 0 STF Via(x) (2.10)
1.4 Isotropic Uniaxial o,/(x, ) #0 STF vilx,t,6,47) 2.9)
1.5 Isotropic Multiaxial const, 0 STF Vil x) 2.9
1.6 Isotropic Multiaxial g(f)ok(x) 0 STF velx, o) 2.9)
1.7 Isotropic Muttiaxial o,/(x, 1) 0 STF vilx,t,0) 2.9)
1.8 Isotropic Multiaxial o,/(x, ) #0 STF Vil x, t,0,4T) 2.9)
1.9 Anisotropic Uniaxial const. 0 STF vi(x) (2.8)
1.10 Anisotropic Uniaxial g(f)o%(x) 0 STF Vex) (2.8)
1.11 Anisotropic Uniaxial é,/(x, ) 0 STF Vilx, t, 0) (2.8)
1.12 Anisotropic Uniaxial ¢(x, t) #0 STF vi(x, t,6,4T) (2.8)
1.13 Anisotropic Uniaxial const. 0 DTF vi(x, 1) (2.8)
1.14 Anisotropic Uniaxial g(t)o#(x) 0 DTF Vi, 1, 0) (2.8)
1.15 Anisotropic Uniaxial o,(x, 1) 0 DTF vidX, £, 0) (2.8)
1.16 Anisotropic Uniaxial a,(x, f) #0 DTF vikx, t,0,4T) (2.8)
1.17 Anisotropic Multiaxial const. 0 STF vidx) (2.8)
1.18 Anisotropic Multiaxial g(f)of(x) 0 STF vilx, o) (2.8)
1.19 Anisotropic Multiaxial o,,(x, ) 0 STF Vil x, t,0) (2.8)
1.20 Anisotropic Multiaxial a,(x, ) #0 STF vi(x.t,0,4T) 2.8)
1.21 Anisotropic Multiaxial const. 0 DTF vilx, 1) 2.8)
1.22 Anisotropic Multiaxial g(f)o}(x) 0 DTF vilx, 1, 0) 2.8)
1.23 Anisotropic Multiaxial oy,(x, 1) 0 DTF VX, t, @) (2.8)
1.24 Anisotropic Multiaxial a,,(x, 1) #0 DTF vikx, t, o, AT) (2.8)
STF = same time functions. DTF = distinct time functions in all directions.

Table 2. Some properties of viscoelastic pseudo Poisson ratios vy,
Case  Conditions Stresses Temperature 7  Moduli vi(x, 0 Eqn No
2.1 Isotropic Uniaxial const. 0 STF vi{x) (A.3)
22 Isotropic Uniaxial g(f)a(x) 0 STF vi(x) (A.3)
23 Isotropic Uniaxial o (x, ) 0 STF vi(x) (A3)
24 Isotropic Uniaxial o,(x, ) #0 STF vix, t,0,49) (A.6)
2.5 Isotropic Multiaxial const. 0 STF vi(x) (A.6)
2.6 Isotropic Multiaxial g(#)a(x) 0 STF vi(x,0) (A.6)
2.7 Isotropic Multiaxial o,,(x, ) 0 STF vi(x,0) (A.6)
28 Isotropic Multiaxial g,(x, ) #0 STF vilx, to, A T) (A.6)
29 Anisotropic Uniaxial const. 0 STF vi(x) (A.6)
2.10 Anisotropic Uniaxial g(9)afi(x) 0 STF vi(x, @) (A.6)
2.11 Anisotropic Uniaxial o,/(x, ?) 0 STF vi(x, t,0) (A.6)
2.12 Anisotropic Uniaxial o,,(x, ) #0 STF v, t,o, A T) (A.6)
2.13 Anisotropic Uniaxial const. 0 DTF Vviy(x, 1) (A.6)
2.14 Anisotropic Uniaxial g(£)#(x) 0 DTF vix, 8 (A.6)
2.15 Anisotropic Uniaxial a/(x, 1) 0 DTF vilx, 1) (A.6)
2.16 Anisotropic Uniaxial o,(x, t) #0 DTF vilx, t,0,4T) (A.6)
2.17 Anisotropic Multiaxial const. 0 STF vi(x, 1) (A.6)
2.18 Anisotropic Mutltiaxial g(H)ok(x) 0 STF vi(x, 0) (A.6)
2.19 Anisotropic Multiaxial o,,(x, ) 0 STF vi(x, t,6) (A.6)
2.20 Anisotropic Multiaxial o,,(x, 1) #0 STF vix, t,a,A4T) (A.6)
2.21 Anisotropic Multiaxial const. 0 DTF vix, 1) (A.6)
222 Anisotropic Multiaxial g(9)af(x) 0 DTF vi(x, t,a) (A.6)
2.23 Anisotropic Multiaxial o,/(x, £) 0 DTF viu(x, t,a) (A.6)
2.24 Anisotropic Multiaxial o,/x, ¢) #0 DTF vi(x, t,0,4T) (A.6)

STF = same time functions. DTF = distinct time functions in all directions.
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J CLImn(xa t, l’)o-mn(xa t/) dt/+'[ q{!(xs l, t/)ﬂf(xa t/) dt’
0

via(x, £) = — fork # 1 (2.8)

4

1
j Cgop(X, 1, £)6,,(x, ) dr+ J q%(x, LY T (x,t)dt

0 0

Each viscoelastic PR, then, is not only dependent on the compliances (or moduli) but also
on all nonvanishing stress tensor components (including shears) and temperature histories.
A similar phenomenon has been noted by Hilton and Peichocki (1962) for viscoelastic
shear centers.

In the isotropic case, eqns (2.8) reduce to

3 t t
2 U Cliom (X, £, £ (X, t’)dt’]+j qlx, t, AT (x,0)dt
m=1

Va(x,1) = —— ? Ot fork #1
> U‘ Crterm (X5 1, 1) G (X, 1) df’]‘i"j q(x, 6, ) A T (x,t')dr
m=1

0 0

2.9)

making v, stiil buth siress and thermal expansion time tosiory dependeni. The same holds
true for the simplest isothermal uniaxial loading conditions represented by eqns (2.2) to
(2.4), which yield

4
Con(x, 8, 1Yo (x, 1) dY
0

Vil 1) = — — k#1 (2.10)
J Cuxr1 (x, 8, 0)0 1, (x, 1) dr’

0

and preserve the single stress tensor component loading history dependence of v.
Isotropic viscoelastic materials can also be characterized in terms of shear (G) and
bulk (K) moduli and when FT are applicable, the following relations exist

7 = = 1 1+G/K
Ciin = Chapp = Ci333 = = 3E
Cisis = Cosns = Craps = m
1212 = L2323z = L3z = c=;
= = - 11
Ciomn = Cispm = Cospm = o2 — 3% @.11)

(See Appendix A for some applications of eqns (2.11).) The effects of stresses and thermal
expansions on expressions (2.8) to (2.10) are shown in Table 1 and discussed in the next
section. Poisson ratios for nonlinear viscoelastic materials remyain preseribed by eqns (2.6),
but their FT cannot be defined, and the above analyses and observations are inapplicable.

Anisotropic and isotropic viscoelastic moduli are expressible in Prony series in the
time domain, such that for linear materials

ad)klmn (xs t)

Eklmn(x’ t) = at

Nl ‘ dr
- Pran () €XP {_L [x, T(x, 1), M(x,t),o(x, t, T)]} @12

Tkimnp



3086 H. H. Hilton and S. Yi
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Fig. 1. Effects of E(0) and time shifts on moduli.

where ¢y,..(x, t) are anisotropic nonhomogeneous relaxation functions. The coefficients
qﬁk,,,,,,,,, relaxation times 7y,.,,(x, f) and the number of series terms NFme are all distinct
directional material properties. The coefficients qbk,m,,,, are measures of the magnitude of the
moduli, while the relaxation times determine the relative shifts on the time scale (Fig. 1).
In particular, certain predetermined values are of importance, such as

Tkimno = O ¢)klmn0(x) = ¢k[mn(x9 OO) = ¢Z(l)mn(x)
Nkimn

Biimn (X) = Pin(x,0) = ; Bramnp (X) (2.13)

The simplest anisotropic model, which does not possess these restrictions, is one where
amplitude and time shift multipliers are introduced. This characterization encompasses
identical N, (])I, and 7, values in all directions, while being subjected to directionally sensitive
distinct amplitudes and time dependences through orientationally influenced shift par-
ameters dy,,.,, and is represented by

N t dt'
B2 = A 7, ) P {”“"’ﬂ J £, TCx, 0). MGx, ), (. 1 T)]}

p=1

(2.14)

with @ = A ®® and ¢35, = Aum.¢™ as seen in Fig. 1.
Similarly, elastic Poisson ratios can be derived from elastic constitutive relations
equivalent to eqn (2.1) to yield

eq(x, 1) win (X )G e (X, 1) + A 3T (x, 1)
) = — B0 Cl id. @.15)
E’[ecﬁ(x’ t) [cﬁmn(x)amn(xa I)+"dﬁg—(x9 t)

Table 3 shows the relation of the stresses and thermal expansions to the elastic v{,.
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Table 3. Some properties of elastic poisson ratios v,

Case Conditions Stresses Temperature 7 vi(x, 1) Eqn No.
3.1 Isotropic Uniaxial o,,(x, £) 0 vi(x) 2.15)
32 Isotropic Uniaxial o(x, £) #0 vi(x,0, 4T) (2.15)
33 Isotropic Multiaxial 6,,(x, {) 0 v (x, o) (2.15)
3.4 Isotropic Multiaxial g;/(x, 1) #0 vidx,0,4T) (2.15)
3.5 Anisotropic Uniaxial a(x, 1) 0 vi(x) 2.15)
3.6 Anisotropic Uniaxial a,,(x, 1) #0 vilx, 0, 4T) 2.15)
3.7 Anisotropic Multiaxial o,(x, 1) 0 vildx, 0) (2.15)
38 Anisotropic Multiaxial o(x, ) #0 vi(x,0,4F) (2.15)

3. DISCUSSION

The proper definition of viscoelastic Poisson ratios is the clue to the discussion that
follows. Aside from what has been called in this paper the physical (v,, eqns (2.6)) and the
pseudo (vi;, eqns (Al)) PR, there remains the issue of loading and thermal expansions time
histories to be settled. Additionally, the question of whether either the proper or the pseudo
definition is limited to uniaxial stresses at isothermal conditions needs to be explored. If
the former is true, then as will be shown subsequently, strain data from multiaxial stress
experiments cannot be used for uniaxial load Poisson ratio determinations because the
viscoelastic v, and v, are load history dependent. Or conversely, uniaxially determined
viscoelastic v,; and v}, are not universal and exportable to other multiaxial load histories.
Linear compliances, moduli and creep and relaxation functions are stress independent and,
hence, load history insensitive, but PR by their very nature are nonlinear functions of pairs
of perpendicular tensile or compressive strains. Even for uniaxial stress fields, additional
complications arise in the experimental determination and definition of both isotropic and
anisotropic v, and v, if thermal expansions are present.

It can be seen from eqns (2.6) for the physical Poisson ratios v, and (Al) for the
pseudo vi, that these two definitions are incompatible with each other. Consider the simplest
possible set of conditions for an isothermal uniaxial time independent loading with com-
pliances obeying identical time functions. Then from eqns (2.8) and (A6), one obtains

. _ C;_)III(X) 31
vi(x, 8) = viy(x) = — C,?_k“(x) (3.1a)
and
Viulx, ©) = viy(x) = viu(x, 1) = v (x)d(1) (3.1b)

where 8(¢) is the Dirac delta function. These are Cases 1.1 and 2.1 in Tables 1 and 2 and
indicate two radically different results.

If one looks next at Cases 1.2 and 2.2, where the only alteration is that now
ou(x, 1) = g(H)a¥(x), then one obtains again the above results eqns (3.1a) and (3.1b). Cases
1.3 and 2.3 for a,,(x, f) which are nonseparable functions, yield

vu(x, ) = fu(x, 1) and  vi(x, 1) = Fu(x, 1) (3.2)

where f;, # F,.

The similar Cases 1.13-1.15 and 2.13-2.15 for anisotropic viscoelastic compliances
with distinct time functions, respond with strikingly different v,;, and v}, because these time
functions no longer divide out in either ratio definition. All six cases, which are for
isothermal uniaxial stresses, show that both Poisson ratios are time dependent and only in
Cases 1.13 and 2.13 with constant stresses are load history independent PR.
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Cases 1.4, 1.8, 1.12, 1.16, 1.20, 1.24, 2.4, 2.8, 2.12, 2.16, 2.20 and 2.24 all include
thermal expansions and indicate that under all conditions v;, and v, are always time, stress
and thermal expansion dependent.

Table 3 lists the properties of elastic Poisson ratios. The time dependence is not
indicated because elastic material properties are not functions of time and the elastic v§,
become implicitly time dependent only through their stress functionality. It is readily seen
that only isothermal uniaxial stresses lead to constant elastic vs. In all other cases they are
stress and thermal expansion dependent, when the latter are present.

Tables 1, 2 and 3 summarize the analytical results for viscoelastic isotropic and
anisotropic physical and pseudo Poisson ratios as well as for elastic ones. The FT inversions
of egns (2.8)—(2.10) and (A4)—(A6) yielding v,/(x, t) represent formidable tasks and cannot
be accomplished and analytically even for the simplest model characterizations. However,
they can be carried out numerically with the help of fast FT (FFT) algorithms, particularly
if the real time interval of interest is relatively short. In the absence of any inversions,
several important observations on the true physical viscoelastic v,, are immediately evident
from the preceding analysis, such as:

(A) Because of their nonlinear relations to strain tensors, neither physically defined iso-
tropic nor anisotropic viscoelastic Poisson ratios can be formulated in terms of the
elastic/viscoelastic integral transform analogy, although moduli remain stress and
displacement independent for linear materials.

(B) Both isotropic and anisotropic vs depend on material properties, loading (stress)
and thermal expansion histories, but under some special circumstances these history
functions factor out of the v, expressions.

(C) By virtue of eqns (2.8), anisotropic vs can be time independent if and only if all moduli
(compliances, relaxation functions) obey the same time functions in all directions,
9 =0 and the stress tensors are constants or are separable into o,(x, f) = g(?)o¥(x).
This compliance class represents a highly restrictive set of conditions (Hilton 1996).

(D) In multiaxial loading, isotropic vs can be time independent if and only if G and K have
identical time functions, J = 0, the temperature 7 = 7(¢) only, and the stress tensors
are separable a la (C) above. Separation of variables here can only be achieved if
Z =0 (Hilton and Russell, 1961).

(E) In uniaxial loading, isotropic vs are time independent if and only if G/K = const. (same
time functions) and 7 = 0.

However, important observations and conclusions can be gleaned from analytic exam-
inations of anisotropic and isotropic Poisson ratios as shown in Figs 2 and 3.

In linear viscoelasticity, of which linear elasticity is a subset, the range of values for
which v can theoretically exist is —1 < v(¢) < 0.5, but a number of physical implications
must be taken into account. Figure 2 is a composite of influences of Young’s (£), shear (G)
and bulk (K) moduli, and Poisson ratios (v). In the v-E/G domain, the region bounded by
2< E/G <3 and 0 <v<0.5 normal strains are of opposite signs for 1-D stresses, i.e.
tensile &, > 0 and compressive &, < 0, etc. or vice versa, which is the usual material
behavior, although there are some rubbery materials that are capable of producing equal
sign strains in perpendicular directions. The region E/G < 2 where K < G is a physical
stranger to most real materials.

Similar, but more complicated relations for ¥,, in terms of the total set of E,,., can be
derived for general anisotropic viscoelastic states as defined by eqns (2.1), which now
additionally involve the shear moduli. In any case, viscoelastic Poisson ratios depend on
moduli function fractions as seen from eqns (2.8)-(2.10). If all moduli E,,(x,?) and
relaxation functions ¢y,..(x,!) have identical time functions, then all v,(x,?) are time
independent. This is due to the time function transforms in each complex moduli simply
factoring and then dividing out of the expressions for ¥ in eqns (2.8)—(2.10). It has been
noted by Hilton (1964a, 1996) that such constant viscoelastic Poisson ratio values are
physically true only for imcompressible materials when v(z) = 0.5. Under all other cir-
cumstances constant v values represent extremely restrictive conditions for real materials.
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Fig. 3. Poisson ratios and compliances.

Under uniaxial loading (o, # 0), the FT of isotropic vs in terms of the two moduli is

i 1 1 - .
. J_m [25()@ ) — R~ w)]al 1 (x, w) expliot) dw
V(x,w) = J - " . exp(—iws) dt
o LO [5 o) + < w)]ﬁ,l(x, w) exp(ion) do

(3.3a)
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or
f [0.05C(x,t,t)—Cg(x, t, )Mo, (x, ) dr
© 0
Y(x,w) = J - exp(—iwt) dt (3.3b)
- J [Ce(x, t, 1)+ Ck(x, 1,1)]o, (x, 1) dr’
0
I\ v J

=v(x,1)

where the shear and bulk compliances are C; = 1/G and Ty~ = 1/K. Isotropic compliances
can be expressed in the same form eqn (2.12) as anisotropic ones, yiclding

Coltn) = CEEIBD— T CF0)exp 1352 G4
and
Celx.) = CE(O30) — Y. CHGx) exp[—11250) @5

p=1

Then as an illustrative example, consider the simplest model given by egns (2.14) with
K _

¥ = ary and N° = N* = N, and for o,, = const it yields before the FT is applied in eqn
(3.3b)

0.5C% (x)—0.5 i Cyt lexp(—t/7,) — 11— CE(x)+ i(Cl’frp/a)[exp(—at/rp)— 1]
p=1 1

p=

v(x, )= 5 m
CS(x)— 3 Cirlexp(—t/t,)— 1]+ CE(x)— Y (CKr,/a)exp(—atjt,) — 1]

=

(3.6)

If G(x,1) are expressed in terms of identical time functions, say G(x,7) = Go(x) f(1)
or G(x,t) = Gyf(x,?) and K(x,#) = Ky(x) f(¢) or K(x, 1) = Kf(x, t), then after the inner
integrations the inverses of the product functions /3, factor and v becomes

0.5—Go(x)/Ko (x)

v(x, 1) = v'(x) = 1+ G, (x)/Ko (%)

(3.7)

where v is the time independent elastic (instantaneous) PR. Equation (3.6) can also be
interpreted by setting a = 1 and Cx = ACg, which again yields the same time independent
PR of eqn (3.7). Similarly, the anisotropic vs of the previous section would reduce to their
elastic counterparts, with v, (x, t) = vi,(x) for k # /, when the moduli have the same time
functions in all directions, such that E,,,(x, 1) = E..(X) f() ot Eg(x, 1) = Efn f(x, 1).
Figure 3 is a plot of isotropic C;, Cx and v vs log time. All curves represent a real
material and are modeled with N = 29. The C; and Cy are normalized w.r.t. their own
elastic instantaneous (maximum) values. Numerical values are CS%/C§ = CX/C& = 1.5,
C&/C§ = 0.01 and a = 0.01. It can be readily seen that v is time independent only in those
t regions where CX/C§ or CX/CS are constants. This condition indicates that both changes
in shape and in volume must proceed either in an elastic manner or in a fully relaxed fashion
for v(¢) to remain constant. Since in the present illustrative example the ratios Gy/K, and
G.. /K, are equal, it follows that v, = v, and in the present example they are equal to 0.364.
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Fig. 5. Effects of time shifts on Poisson ratios.

Figures 4 and 3, respectively, depict the effects of G,/K; and of @ on PR. It is seen the
larger the K, compared to G, the less time dependent v becomes and approaches the
incompressible value of 1/2. The influence of decreasing values of « increase the relaxation
times t¥ compared to ¢ and to widen the number of decades over which PR are time
dependent.

The relative influences of Gs and Ks on isotropic PR of eqns (3.6) and in Figs 4 and 5
are identical to that of Cy, and C,,, on anisotropic v, of eqns (2.6) for &/ =0 and
uniaxial stress fields (g, # 0).

One must now ask what kind of real materials admit constant Poisson ratios to
characterize their viscoelastic behavior. One obvious answer is all incompressible isotropic
materials do, where v(¢) = 0.5. For isotropic materials, eqns (3.3) and (3.4) require that G
and K obey the same time functions so that
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G(x,0) _ Go(x)
K(x,1)  Ko(x)

(3.8)

It is an observable fact that eqns (3.4) and (3.5) are not satisfied by real viscoelastic
materials, except for the incompressible ones or where v ~ 0.4999% and K, » G,. For
most materials K, is only > G, but additionally real viscoelastic materials, such as high
temperature metals, polymers, composites, etc., exhibit creep and relaxation rates for
volume changes which are much slower than those contributing to shape changes, indicating
7} > 15. Consequently, on a time plot Cy{f) curves are always shifted in the direction of
larger ¢ when compared to Cg(#). Conversely, since o ~ 1/1, Cx(w) lags behind Cg(w) on a
frequency w plot.

Similarly, in the anisotropic case eqns (2.8) to (2.10) again mandate that in order to
achieve constant v,(¢) values all pertinent Ej,,,() must be in either their elastic or fully
relaxed ranges as 1t —» 0 or t > .

Physically, constant viscoelastic v,, conditions over the entire time space can be
approached if real materials such as, for instance, composites have fibers which either are
elastic or have extremely slow creep rates with relaxation times orders of magnitude larger
compared to the viscoelastic polymer matrix. The values of the E,;, in different orientations
are then predominately dictated by fiber stiffnesses and directional arrangements, while the
polymer matrix remains isotropically viscoelastic with identical constitutive relations in all
directions.

The analysis indicates that isotropic viscoelastic materials require two moduli obeying
different time functions, while anisotropic materials need as few as nine and as many as 21
time dependent moduli for complete property specification. Additionally and inde-
pendently, one thermal expansion function is called for in isotropic viscoelasticity and one
to six are needed for anisotropic modeling.

Ultimately, it must be remembered that Poisson ratios do not contribute anything
additional to material characterization that cannot be achieved totally by moduli,
compliances, or creep and relaxation functions. The utility of the PR because of their
nonlinear behavior is, therefore, severely limited. Consequently, moduli or compliances, or
creep or relaxation functions should be the vehicle of choice for describing viscoelastic
responses.

Isotropic and anisotropic viscoelastic analyses in the present paper demonstrate the
close relationship between viscoelastic moduli and Poisson ratios, particularly in regard to
their time and stress dependences. No experimental data for non-metallic materials seems
to exist describing complete viscoelastic multiaxial experimental strain or displacement
measurements necessary for proper Poisson ratio determinations. The works of Beckwith
(1980, 1984), Bogetti and Gillespie (1991), Crossman et al. (1978), Flaggs and Crossman
(1981), Halpin and Pagano (1968), Lin and Hwang (1989), Tuttle and Brinson (1985a, b,
1986) and Yang et al. (1983), among other, are typical examples of experimental inves-
tigations reporting on anisotropic moduli from which, because of inherent 2-D and 3-D
experimental complexities it is difficult to deduce the total anisotropic modulus and Poisson
ratio picture. Additionally, an extensive collection of isotropic viscoelastic modulus data
has been presented and analyzed by Nashif et al. (1985).

Levitsky and Shaffer’s (1974) and Shaffer and Levitsky’s (1974) interpretations of
responses for elastic thermo-setting materials use Poisson ratios which are not defined
according to the present multiaxial analysis. Subsequently, Levitsky and Shaffer (1975)
employed a single Maxwell Viscoelastic model with constant bulk modulus and a PR
defined by

_05-G@®)/K,

'O = TG0k (3.9)

which is inapplicable for their 2-D time dependent stress states. Finally, Kim and White
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(1996, 1997) assumed a constant Poisson ratio v,(¢) during AS4/3501-6 composite cure and
then calculated a relaxation modulus £(z) based on the relation

E(t) =2(14+v,)G() (3.10)

which essentially begs the equation regarding appropriate viscoelastic values of v and
renders the calculation of E(¢) from experimentally determined G(f) or vice-versa highly
questionable for their multiaxial time dependent stress fields. It is unfortunate that these
five publications chose an involvement with ill defined Poisson ratios, because their analyses
and interpretations of experimental data could be carried out in terms of moduli without
ever appealing to any PR concepts. As a matter of fact, viscoelastic material characterization
is best defined in terms of moduli or compliances, or creep or relaxation functions, which
for linear materials do not bear the nonlinear and load-time history burden of Poisson ratios.
Hwang (1990) has reported viscoelastic experimental results for IM7/851-7 graphite/epoxy
composites indicating that in the fiber dominated direction the compliances C,;;; and
Poisson’s ratio v, are time independent, while the compliances C,;,, and C,s,; exhibit
distinct time dependent responses.

4. CONCLUSIONS

The isotropic and anisotropic viscoelastic analyses demonstrate the close relationship
between viscoelastic moduli and Poisson ratios, particularly in regard to the latter’s time
dependence and nonlinear functionality w.r.t. stress fields, thermal expansions and time
histories. Uniaxially determined Poisson ratios are not exportable to other uniaxial con-
ditions with different loading time sequences nor are they applicable to multi-axial stress
fields. Poisson ratios add little to viscoelastic isotropic and anisotropic material charac-
terization that is not already encompassed by moduli, compliances, and creep and relaxation
functions. Consequently, any one of the latter should be the characterization model of
choice, particularly because of the inherent nonlinear nature of Poisson ratios. No exper-
imental data for non-metallic materials seems to exist describing multiaxial experimental
strain or displacement measurements necessary for proper Poisson ratio determinations. It
is, therefore, recommended that multiaxial experiments and data collection be undertaken
on viscoelastic materials in order to correctly catalogue isotropic and anisotropic deter-
ministic and stochastic material property parameters.
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APPENDIX A—ALTERNATE POISSON RATIO MODELING

It is possible to postulate an alternate model for a pseudo Poisson ratio, v}, based on a revised eqn (2.7) as
(see for instance Zinoviev and Ermakov (1994) and others).

E[‘l(x9 (l))

Tu(x,w) = and vy # vl fork sl (AD

Fuclx, )

While this 7}, has no relation to the proper physical ¥,, defined by the FT of eqn (2.6), it presents some
computational advantages and a certain symmetry in relation to corresponding elastic ¥;,. As a first illustrative
example, consider an isotropic elastic medium, where

0.5—Go(x)/Ko(x)
V(X)) =vo(x) = ————— A2
[ R YN e A2
The usual protocol for applying the elastic—viscoelastic analogy to v, and in this instance without regard for
the definition (2.6), is to take the FT of eqn (A2) and substitute complex viscoglastic moduli or compliances for
elastic ones, such that

0.5—G(x, w)/K(x, )

1+5(x, w)/?(x, w) k#l (A3)

Vilx, w) =
and

Th(x0) =Th(nw) and Ti(xw) =1

with 7%, # 7, of eqns (2.9) and (2.10), unless both PR are time dependent. The FT only exists only if the previously
discussed caveats regarding 7 = 0 or thermorheologically simple materials with equal &,,,,, are in force. Therefore,
the definitions and results of this Appendix as well as the conclusions and comparisons to v, in the Discussion
Section apply only if the FT of eqns (A1) exits. The expressions (A3) can also be obtained directly from the
definitions (A1) and (2.11) for any uniaxial stress g,,(x, r). When the expression for 7}, is inverted, it yields
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vi(x, 1) = J‘w Vu(x, w)expiwt) dw (A4)

—w

and bears no resemblance to the proper physical definition of v,, from eqns (2.9) and (2.10) since these alternate
ones are devoid of any loading and thermal expansion time histories.

Similarly, for the isothermal uniaxial loading in the x, direction of eqns (2.2b)—(2.4b), pseudo Poisson ratios
can be defined for an orthotropic material as

Thix, ) = —gﬁ Thix,w) = _g._3 Vi) = ~g£ (AS)

1 1 12

Unfortunately, the simplicity of eqns (AS) is deceiving as its stress and thermal expansion free definition is
caused by the uniaxial stress state. For multiaxial nonisothermal conditions, eqns (2.1b) substituted into (Al)
yield the general expression for the pseudo Poisson ratio as

Cltn (X, 0)F (6, @) + Jy (x, ) £ T (x, 0)

Vi(x,w) = — Cior (% D)8y (%, ) + G (%, 0) A T (%, )

#1 (A6)

indicating that if more than one stress tensor component is present, even for 7 = 0, v}, is not stress history
independent. The FT inversion of eqns (A6)—(A4) is considerably more involved than that of eqns (2.8) for v,,.
A detailed analysis of the behavior of eqns (A6) are given in Table 2 and in the Discussion Section.



